AtNPF2.5 Modulates Chloride (Cl−) Efflux from Roots of Arabidopsis thaliana
نویسندگان
چکیده
The accumulation of high concentrations of chloride (Cl-) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl- sensitive plant species those that exclude relatively more Cl- from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl- remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl- into the root xylem, which affects the accumulation of Cl- in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl- permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl- efflux from roots, and a greater Cl- accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, [Formula: see text] content in the shoot remained unaffected. Accumulation of Cl- in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl- transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl- efflux from the root, contributing to exclusion of Cl- from the shoot of Arabidopsis.
منابع مشابه
Effects of abscisic acid and cytoplasmic pH on potassium and chloride efflux in Arabidopsis thaliana seedlings.
The effects of ABA, isobutyric acid (IBA) and nicotine on K+ and Cl- efflux were studied in Arabidopsis thaliana seedlings, and the role of pHcyt and Em in the regulation of the efflux of these ions was discussed. The data show that treatments with IBA and nicotine influenced in opposite directions the efflux of either K+ or Cl-: K+ efflux was increased by nicotine and reduced in the presence o...
متن کاملCharacterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation.
Organic-acid secretion from higher plant roots into the rhizosphere plays an important role in nutrient acquisition and metal detoxification. In this study we report the electrophysiological characterization of anion channels in Arabidopsis (Arabidopsis thaliana) root epidermal cells and show that anion channels represent a pathway for citrate efflux to the soil solution. Plants were grown in n...
متن کاملGmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean
The family of chloride channel proteins that mediate Cl(-) transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl(-) homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl(-)), on plants under salt stress remains ...
متن کاملمشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملAn improved agar-plate method for studying root growth and response of Arabidopsis thaliana
Arabidopsis thaliana is a widely used model plant for plant biology research. Under traditional agar-plate culture system (TPG, traditional plant-growing), both plant shoots and roots are exposed to illumination, and roots are grown in sucrose-added medium. This is not a natural environment for the roots and may cause artifact responses. We have developed an improved agar-plate culture system (...
متن کامل